
Ann. Henri Poincaré 25 (2024), 213–234

c© 2023 Springer Nature Switzerland AG

1424-0637/24/010213-22
published online January 11, 2023
https://doi.org/10.1007/s00023-022-01257-y Annales Henri Poincaré
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Abstract. We derive linear fluctuating hydrodynamics as the low den-
sity limit of a deterministic system of particles at equilibrium. The proof
builds upon the results of Bodineau et al. (Long-time correlations for a
hard-sphere gas at equilibrium, 2022) where the asymptotics of the co-
variance of the fluctuation field is obtained, and on the proof of the Wick
rule for the fluctuation field in Bodineau et al. (Long-time derivation at
equilibrium of the fluctuating Boltzmann equation, 2022).

1. The Different Levels of Modeling

1.1. The Atomistic Description

The microscopic model consists of identical hard spheres of unit mass and
of diameter ε. The motion of N such hard spheres is ruled by a system of
ordinary differential equations, which are set in (Td × R

d)N where T
d is the

unit d-dimensional periodic box with d ≥ 3: writing xε
i ∈ T

d for the position
of the center of the particle labeled by i and vε

i ∈ R
d for its velocity, one has

dxε
i

dt
= vε

i ,
dvε

i

dt
= 0 as long as |xε

i (t) − xε
j(t)| > ε for 1 ≤ i �= j ≤ N ,

(1.1)

This paper is dedicated to the memory of K. Gawedzki. We show how dynamical noise

in hydrodynamic models of perfect gases can emerge from a deterministic microscopic dy-

namics, by combination of strong microscopic instabilities with the small-scale regularity of

the initial distribution. This enhanced dynamical noise seems to share similarities with the

concept of spontaneous stochasticity introduced by K. Gawedzki et al. in [4].
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with specular reflection at collisions:

(vε
i )

′ := vε
i − 1

ε2
(vε

i − vε
j) · (xε

i − xε
j) (xε

i − xε
j)

(
vε

j

)′ := vε
j +

1
ε2

(vε
i − vε

j) · (xε
i − xε

j) (xε
i − xε

j)

⎫
⎪⎬

⎪⎭
if |xε

i (t) − xε
j(t)| = ε .

(1.2)
This flow does not cover all possible situations, as multiple simultaneous colli-
sions are excluded. But it can be shown (see [1]) that for almost every admis-
sible initial configuration (xε0

i ,vε0
i )1≤i≤N , there are neither multiple simulta-

neous collisions, nor accumulations of collision times, so that the dynamics is
globally well defined.

We will not be interested here in one specific realization of this determin-
istic dynamics, but rather in a statistical description. This is achieved by intro-
ducing a measure at time 0, on the phase space we now specify. The collections
of N positions and velocities are denoted respectively by XN := (x1, . . . , xN )
in T

dN and VN := (v1, . . . , vN ) in R
dN , and we set ZN := (XN , VN ), with ZN =

(z1, . . . , zN ), zi = (xi, vi). A set of N particles is characterized by a ran-
dom variable Zε0

N = (zε0
1 , . . . , zε0

N ) specifying the time-zero configuration in the
phase space

Dε
N :=

{
ZN ∈ (Td × R

d)N /∀i �= j , |xi − xj | > ε
}

, (1.3)

and an evolution

t �−→ Zε
N (t) =

(
zε
1(t), . . . , z

ε
N (t)

)
, t > 0

according to the deterministic flow (1.1)–(1.2) (well defined with probability
1).

To avoid spurious correlations due to a given total number of particles,
we actually consider a grand canonical state (as in [21,28]), set on the phase
space

Dε :=
⋃

N≥0

Dε
N

(notice that Dε
N = ∅ for N large). This means that the total number of particles

is also a random variable, which we shall denote by N .
More precisely, at equilibrium the probability density of finding N parti-

cles at configuration ZN is given by

1
N !

W ε
N (ZN ) :=

1
Zε

μN
ε

N !
1Dε

N
(ZN )M⊗N (VN ) , for N = 0, 1, 2, . . . (1.4)

for some (large) με to be fixed below, with

M(v) :=
1

(2π)
d
2

exp
(

−|v|2
2

)
, M⊗N (VN ) =

N∏

i=1

M(vi) ,

and the partition function is given by

Zε := 1 +
∑

N≥1

μN
ε

N !

∫

TdN

∏

i�=j

1|xi−xj |>ε dXN .
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Here and below, 1A will be the characteristic function of the set A. The prob-
ability of an event A with respect to the equilibrium measure (1.4) will be
denoted Pε(A), and Eε will be the expected value. Definition (1.4) ensures
that

μ−1
ε Eε (N ) → 1

as με → ∞ with μεε
d � 1.

1.2. The Kinetic Description

Let us define the empirical measure of the hard-sphere model

πε
t :=

1
με

N∑

i=1

δzε
i (t) . (1.5)

Under the invariant measure (1.4), it is not hard to see that if μεε
d → 0 then πε

t

concentrates on M: for any test function h : Td × R
d → R and any δ > 0,

t ∈ R,

Pε

(∣
∣
∣πε

t (h) −
∫

Td×Rd

M(v)h(z)
∣
∣
∣ > δ

)
−−−−→
με→∞ 0 , (1.6)

which can be interpreted as a law of large numbers.
The fluctuations of the empirical density πε

t around its equilibrium value
are described by the fluctuation field ζε

t defined by

ζε
t (h) :=

√
με

(
πε

t (h) − Eε

(
πε

t (h)
))

, (1.7)

for any test function h. Initially ζε
0 converges in law towards a Gaussian white

noise ζ0 with covariance

E
(
ζ0(h1) ζ0(h2)

)
=
∫

h1(z)h2(z)M(v) dz . (1.8)

As the measure is invariant, this covariance is constant in time. Let us define
the mean free path

α := (μεε
d−1)−1 ,

and assume that α−1 ≥ 1 is bounded or slowly diverging, corresponding to the
low density scaling. In this scaling it has been proved in [11,12] that (ζε

t )[0,T ]

converges in law for all times T to a weak solution of the fluctuating Boltzmann
equation

dζt =
(

−v · ∇x − 1
α

L
)

ζt dt + dηt , (1.9)

where the linearized collision operator is given by

Lg(v) :=
∫

Rd×Sd−1
M(w)

(
(v − v∗) · ω

)
+

[g(v) + g(v∗) − g(v′) − g(v′
∗)] dv∗ dω

(1.10)
with notation

v′ = v − ((v − v∗) · ω)ω , v′
∗ = v∗ + ((v − v∗) · ω)ω (1.11)
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for the precollisional velocities obtained upon scattering, and dηt(x, v) is a
stationary Gaussian noise, explicitly characterized (see [25]). It has zero mean
and covariance

E

(∫ T

0

dt

∫
dzh1(z)ηt(z)

∫ T

0

dt∗
∫

dz∗ h2(z∗)ηt∗(z∗)

)

=
1
2α

∫ T

0

dt

∫
dμ(z, z∗, ω)M(v)M(v∗)Δh1 Δh2

(1.12)

denoting

dμ(z, z∗, ω) := δx−x∗
(
(v − v∗) · ω

)
+
dω dv dv∗dx

and defining

Δhj(z, z∗, ω) := hj(z′) + hj(z′
∗) − hj(z) − hj(z∗) ,

where z′
i := (xi, v

′
i) with notation (1.11) for the velocities obtained upon scat-

tering. Note that this noise is white in time and space, but correlated in ve-
locities.

1.3. The Hydrodynamic Description

It is by now classical (see [2,7,17] and references therein) that the solutions to
the scaled linearized Boltzmann equation

∂tgα + v · ∇xgα +
1
α

Lgα = 0 , gα(0) = g0 (1.13)

converge in the fast relaxation limit α → 0 towards the local thermodynamic
equilibrium

g(t, x, v) = ρ(t, x) + u(t, x) · v + θ(t, x)
|v|2 − d

2
where ρ, u, θ satisfy the acoustic equations

⎧
⎪⎨

⎪⎩

∂tρ + ∇x · u = 0
∂tu + ∇x(ρ + θ) = 0
∂tθ + 2

d∇x · u = 0
(1.14)

and the initial data is the projection of g0 onto hydrodynamic modes

ρ|t=0(x) :=
∫

g0(x, v)M(v) dv , u|t=0(x) :=
∫

g0(x, v)vM(v) dv ,

θ|t=0(x) :=
∫

g0(x, v)
( |v|2

d
− 1
)

M(v) dv .

In the linearized equation (1.13), the frequency of collisions 1/α has been tuned
according to the hyperbolic scaling. The diffusive regime can then be found
by rescaling time by a factor 1/α. In this way, one can also obtain the weak
convergence (which actually filters out the fast oscillating acoustic waves)

gα

( τ

α
, x, v

)
⇀ u(τ, x) · v + θ(τ, x)

|v|2 − (d + 2)
2

(1.15)
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towards diffusive fluid models, namely the incompressible Stokes-Fourier equa-
tions {

∂τu = νΔxu, ∇x · u = 0
∂τθ = κΔxθ ,

(1.16)

where the diffusion coefficients ν and κ depend only on the linearized collision
operator L (they are defined explicitly in (3.20) below). The initial data is the
projection of g0 onto non-oscillating hydrodynamic modes

u|τ=0(x) := P

∫
g0vM(v) dv , θ|τ=0(x) :=

∫
g0

( |v|2
d + 2

− 1
)

M(v) dv

(1.17)
where P is the Leray projection on divergence free vector fields. In the follow-
ing, we refer to non-oscillating modes as those satisfying the incompressibility
and Boussinesq constraints (see 3.16).

1.4. Fluctuating Hydrodynamics

In the hyperbolic regime corresponding to (1.14), the fluctuation-dissipation
principle predicts that there will be no dynamical fluctuation and the fluctua-
tion field tested against hydrodynamical modes (ρ, u, θ) is simply transported
by the acoustic equation. In contrast, in the diffusive regime, when taking into
account the noise at kinetic level (i.e. starting with (1.9)), we expect to ob-
tain fluctuating hydrodynamics. In the following, we will focus on this more
interesting case. We refer to [26], Section 7.1 for the general theory of hydro-
dynamic fluctuations, which was first developed for equilibrium states in [23].
The link with the predictions from kinetic theory in the case of dilute gases
was discussed in [22] (see also [3] for a recent contribution).

Let us define a joint process by time rescaling and projecting on non-
oscillating hydrodynamic modes the fluctuation field ζε

t defined in (1.7). Ac-
cording to (1.15) we consider, for any pair of test functions (ϕ,ψ) ∈ C∞(Td;Rd×
R) with ∇x · ϕ = 0, the fluctuation field

ζε
t (ϕ · v) + ζε

t

(
ψ

( |v|2
d + 2

− 1
))

.

To simplify the notation, we denote from now on the couple of test functions
by

φ = (ϕ,ψ) ∈ C∞(Td;Rd × R) , ∇x · ϕ = 0 (1.18)

and to recover a diffusive regime, time is rescaled as follows:

ξε
τ (φ) := Uε

τ (ϕ) + Θε
τ (ψ)

:= ζε
τ/α (ϕ · v) + ζε

τ/α

(
ψ

( |v|2
d + 2

− 1
))

.
(1.19)

We stress the fact that in contrast with ζε, the test functions in ξε only depend
on the space variable. In the limit με → ∞ with α slowly vanishing, we expect
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the fluctuation fields
(Uε,Θε

)
to converge in the sense of distributions to (U ,Θ)

solving the fluctuating Stokes-Fourier equations
⎧
⎪⎨

⎪⎩

∂τU = νΔxU +
√

2ν P ∇ · Ẇt,

∂τΘ = κΔxΘ +
√

4κ
d+2 ∇ · Ẇt ,

(1.20)

where Wt is a space/time white noise taking values in R
d and Wt is a d × d

matrix with coefficients given by independent white noises. We recall that P
stands for the Leray projection on divergence free vector fields. Note that the
noise is tuned so that the field has a covariance compatible with the invariance
of (1.8). The equations (1.20) should be understood in a weak sense, namely
restricting to any pair of test functions (ϕ,ψ) ∈ C∞(Td;Rd×R) with ∇x·ϕ = 0

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Uτ (ϕ) = U0(eντΔxϕ) +
√

2ν

∫ τ

0

dσẆσ

(
∇eν(τ−σ)Δx ϕ

)

Θτ (ψ) = Θ0

(
eκτΔxψ

)
+
√

4κ
d+2

∫ τ

0

dσẆσ

(
eκ(τ−σ)Δx∇ψ

)
.

We stress that the fluctuations in (1.20) exactly compensate the dissi-
pation according to the fluctuation-dissipation principle. In particular, both
Gaussian processes are characterized by their covariances for σ ≤ τ

⎧
⎪⎪⎨

⎪⎪⎩

E

(
Uσ(ϕ1)Uτ (ϕ2)

)
=
∫

Td

dxϕ1(x) · eν(τ−σ)Δxϕ2(x)

E

(
Θσ(ψ1)Θτ (ψ2)

)
=

2
d + 2

∫

Td

dxψ1(x) eκ(τ−σ)Δxψ2(x).
(1.21)

The main result of this paper is that both limits με → ∞ with μεε
d−1 =

α−1, and α → 0 can be combined in order to derive fluctuating hydrodynamics
directly from the dynamics of particles, thus solving Hilbert’s sixth problem
in the particular case of fluctuations of perfect gases at equilibrium.

Theorem 1.1. Consider a system of hard spheres at equilibrium in a d-dimen-
sional periodic box with d ≥ 3, with inverse mean free time α−1 := μεε

d−1 ≤
log log log με. Then, in the diffusive limit με → ∞, α → 0, the rescaled joint
process (ξε

τ )τ∈[0,T ] defined in (1.19) converges for any T > 0 in law to the
solution of the fluctuating Stokes-Fourier equations (1.20).

Although the microscopic dynamics is completely deterministic, Theo-
rem 1.1 shows that the limiting model has two stochastic contributions:

• the initial fluctuation field keeps track of the uncertainty on the ini-
tial data, at scale O(1): this corresponds to nothing else than the Gaussian
fluctuations under the invariant measure;

• the dynamical noise driving (1.20) is more subtle as it comes from the
sensitivity of the particle system to the details of the initial configuration, at
smaller scales.

At variance, for one-dimensional integrable systems, one expects that the
dominant contribution is the transport of the initial fluctuations with some
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additional random shift in the large scale limit, as was pointed out recently
in [16] for the the hard rod system (see also [14]). The white noise in (1.9)
preserves locally the hydrodynamic modes, however at diffusive time scales,
it ultimately induces the local noise on the hydrodynamic projections (1.20).
Note that a spontaneous generation of noise also holds for the diffusive limits
of a tagged particle to a Brownian motion in an equilibrium hard sphere gas
[6,8] (see also [15] in the quantum case).

As stated at the beginning of this article, the enhanced dynamical noise
appearing in this model seems to share similarities with the concept of sponta-
neous stochasticity introduced in [4], and it would be very interesting to devise
a common formalism to describe both phenomena.

2. The Fluctuation Field in the Low Density Limit: State of the
Art, and Strategy of Proof

The present paper relies on the “weak convergence” approach devised in [11,12]
in order to prove the convergence of the fluctuation field to the solution of the
fluctuating Boltzmann Eq. (1.9). The proofs of [11,12] are quantitative, and the
important parameter is the number of collisions, which is proportional to the
observation time and inversely proportional to the mean free time α. Thus,
the (diffusive) observation time T/α and the parameter α−1 can be chosen
slowly diverging with με, for instance as O(log log log με). This will allow us to
reach the diffusive regime described in Sect. 1.4. In the rest of this section, we
gather the results of [11,12] we shall be using here. We refer to those papers
for proofs—see also [13] for an overview.

For the sake of clarity, we will use the following notations for the different
time scales described in the previous section :

kinetic scale: t = αtkin with tkin = O(1), acoustic scale: t = O(1),

diffusive scale: t = τ/α with τ = O(1).
(2.1)

2.1. Convergence of the Covariance for Diffusive Times

In the analysis of the fluctuation field for diffusive times, the first step is to
study the asymptotic behaviour of the time-rescaled covariance

Covε

( τ

α
, g0, h

)
:= Eε

(
ζε
0(g0) ζε

τ/α(h)
)

(2.2)

as με → ∞, μεε
d−1 = α−1. The following result states that this covariance is

well approximated on R
+ by

∫
Mgα(

τ

α
)hdxdv where gα is the solution of the

scaled linearized Boltzmann Eq. (1.13) starting from g0 ∈ L2
M, defined by the

norm

‖g‖L2
M :=

(∫

Td×Rd

|g|2 Mdxdv

) 1
2

. (2.3)

Theorem 2.1 ([11], Linearized Boltzmann equation). Consider a system of
hard spheres at equilibrium in a d-dimensional periodic box with d ≥ 3. Let g0
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and h be two Lipschitz functions on T
d ×R

d and let gα be the unique solution
in L∞(R+;L2

M) to (1.13) associated with the initial data g0. Then, in the low
density regime με → ∞, μεε

d−1 = α−1 ≤ log log log με, the covariance of the
fluctuation field

(
ζε
τ/α

)

τ≥0
defined by (2.2) satisfies the following estimate: for

any T > 0 such that (T/α2)3/2 � (log log με)
1
4 ,

sup
τ∈[0,T ]

∣
∣
∣
∣Covε

( τ

α
, g0, h

)
−
∫

gα(
τ

α
)h Mdxdv

∣
∣
∣
∣

≤ C‖h‖W 1,∞‖g0‖W 1,∞

(
CT

α2

)3/2

(log log με)−1/4 .

(2.4)

Remark 2.1. In accordance with the diffusive scaling, this estimate depends
on T/α2, which is the ratio between the observation time T/α and the mean
free time α.

2.2. Convergence of Higher Order Moments for Diffusive Times

The next step is to prove that the process ζε
τ/α is asymptotically Gaussian

when με → ∞ and μεε
d−1 = α−1 → ∞. This boils down to showing that the

moments are determined by the covariances according to Wick’s rule

lim
με→∞

α→0

∣
∣
∣Eε

[
ζε
τ1/α(h1) . . . ζε

τp/α(hp)
]

−
∑

η∈Spairs
p

∏

{i,j}∈η

Eε

[
ζε
τi/α(hi) ζε

τj/α(hj)
]∣∣
∣ = 0 , (2.5)

uniformly in τ1, . . . , τp ∈ [0, T ], where Spairs
p is the set of partitions of {1, . . . , p}

made only of pairs. Notice that if p is odd then Spairs
p is empty and the product

of the moments is asymptotically 0.

Theorem 2.2 ([12], Wick’s rule). Consider a system of hard spheres at equi-
librium in a d-dimensional periodic box with d ≥ 3. Let (hi)1≤i≤p be a family
of p bounded functions on T

d × R
d. Then, in the low density regime με → ∞,

μεε
d−1 = α−1 ≤ log log log με, for any T > 0 such that (T/α2)

2p−1
2 �

(log logμε)
1
4 , the fluctuation field

(
ζε
τ/α

)

τ≥0
defined by (1.7) satisfies

∣
∣
∣
∣
∣
∣
Eε

[
ζε
τ1/α(h1) . . . ζε

τp/α(hp)
]

−
∑

η∈Spairs
p

∏

{i,j}∈η

Eε

[
ζε
τi/α(hi) ζε

τj/α(hj)
]
∣
∣
∣
∣
∣
∣

≤
( p∏

i=1

‖hi‖L∞
)(CT

α2

)(2p−1)/2

(log log με)−1/4 ,

(2.6)

uniformly in τ1, ...τp ∈ [0, T ].
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2.3. Tightness in the Kinetic Regime

Finally for processes which depend on a continuous variable (the time variable
in our setting), the convergence of time marginals is not enough to characterize
the convergence in law: possible oscillations with respect to time need to be
under control (see [5, Theorem 13.2 page 139]). For the fluctuation field ζε,
this tightness property has been obtained for short kinetic times, but actually
since the equilibrium measure is invariant under the dynamics, a union bound
provides the tightness on any finite kinetic time, i.e. times of order O(α).

For times much longer than kinetic times, we actually do not expect
the process ζε

t to be tight. Since the covariance Covε

(
t, g0, h

)
is close to the

solution of the scaled linearized Boltzmann equation (1.13), we expect to see a
fast relaxation process with rate O( 1

α ), meaning that only the hydrodynamic
part of gα can be compact for t = O(1). Going to diffusive times t = τ/α,
we also expect to have acoustic waves producing fast oscillations, meaning
that only the non-oscillating hydrodynamic part of gα can be compact for
τ = O(1). Nevertheless, after projecting on the non-oscillating modes, we are
going to show in Sect. 4 that the process (ξε

τ )τ≥0 defined by (1.19) is tight on
the diffusive scale.

2.4. Strategy of the Proof of Theorem 1.1

In view of deriving fluctuating hydrodynamic equations and proving Theo-
rem 1.1, the strategy is now straightforward: we consider the rescaled fluctua-
tion field ξε

τ projected on hydrodynamic, non-oscillating modes (recall (1.19)),
and check that with such test functions and this scaling in time, Gaussianity
(Theorem 2.2) and tightness still hold, and that the covariance asymptotically
converges to the solution to the Stokes-Fourier equation. Note that the projec-
tion (1.19) leads to considering test functions which are unbounded in v and
therefore there are some technical issues when applying Theorems 2.1 and 2.2.
These are dealt with in Sect. 3.2, thanks to a cut-off in energies introduced in
Sect. 3.1. The tightness of the process on the diffusive time-scale is derived in
Sect. 4.

3. Finite Time Marginals

In this section, we are going to characterize the limiting law of the process by
proving the following result. We set from now on

α−1 = log log log με .

Proposition 3.1. For arbitrary times τ1, . . . , τL and test functions φ(1) = (ϕ(1),
ψ(1)), . . . and φ(L) = (ϕ(L), ψ(L)) chosen as in (1.18), the time marginals(
ξε
τ�

(
φ(	)

))
	≤L

converge in law to the limiting process
(Uτ�

(ϕ(	)),Θτ�
(ψ(	))

)
	≤L

as με tends to infinity.
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3.1. Truncated Hydrodynamic Fields

To prove that the limit is Gaussian, Theorem 2.2 cannot be used directly
with the process (ξε

τ )τ≥0 as the test functions are unbounded in L∞ due to
divergences in the velocities. Thus an intermediate cut-off process needs to be
introduced. Let us fix an energy cut-off R � 1 to be determined (see (3.2)
below). Recalling (1.19), we define the modified joint process ξ̄ε

τ as follows. For
any test function φ as in (1.18), we set

ξ̄ε
τ (φ) := ζε

τ/α

(
χ
( |v|2

R

)
ϕ · v

)
+ ζε

τ/α

(
χ

( |v|2
R

)
ψ

( |v|2
d + 2

− 1
))

, (3.1)

where χ is a smooth cut-off function with compact support

χ|[0,1] ≡ 1, χ|[2,+∞[ ≡ 0 .

We choose R depending on ε and converging to ∞ as με → ∞ as follows

R = α−1 = log log log με . (3.2)

Note that the test functions

h̄ :=
(

ϕ · v + ψ

( |v|2
d + 2

− 1
))

χ

( |v|2
R

)

are smooth and bounded thanks to the cut-off in v:

‖h̄‖W 1,∞
x,v

≤ CR2(‖ϕ‖W 1,∞
x

+ ‖ψ‖W 1,∞
x

) . (3.3)

The process ξ̄ε
τ is a good approximation of ξε

τ when R → ∞.

Lemma 3.2. Setting ξε,>
τ := ξε

τ − ξ̄ε
τ then for all 1 ≤ q < ∞ and for ε small

enough
Eε

[(
ξε,>
τ (φ)

)q] ≤ Cq‖φ‖q
Lq(Td)

e−R/4 . (3.4)

Furthermore, one has also

Eε [(ξε
τ (φ))q] ≤ Cq‖φ‖q

Lq(Td)
and Eε

[(
ξ̄ε
τ (φ)

)q] ≤ Cq‖φ‖q
Lq(Td)

. (3.5)

As a consequence, the convergence in law of
(
ξ̄ε
τ�

(
φ(	)

))
	≤L

(derived in
Proposition 3.3 below) will imply the convergence in law of

(
ξε
τ�

(
φ(	)

))
	≤L

, i.e.
Proposition 3.1.

Proof of Lemma 3.2. Recall (see Proposition A.1 in [11]) that for any ε small
enough, the following holds under the equilibrium measure for any function h

Eε

((
ξε
τ (h)

)q) ≤ Cq‖h‖q
Lq

M
, (3.6)

with 1 ≤ q < ∞ and where Lq
M is defined as in (2.3). Since for R ≥ 1

∥
∥
∥ϕ · v

(
χ

( |v|2
R

)
− 1
)∥
∥
∥

q

Lq
M

≤ C‖ϕ‖q
Lq(Td)

e−R/4

∥
∥
∥ψ
( |v|2

d + 2
− 1
)(

χ

( |v|2
R

)
− 1
)∥
∥
∥

q

Lq
M

≤ C‖ψ‖q
Lq(Td)

e−R/4 ,

(3.7)

we find (3.4). For the same reason (3.5) holds. This completes Lemma 3.2. �
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3.2. Covariance of the Hydrodynamic Fields

Proposition 3.3. For arbitrary times τ1, . . . , τL and test functions φ(1) =
(ϕ(1), ψ(1)), . . . and φ(L) = (ϕ(L), ψ(L)) chosen as in (1.18), the time marginals(
ξ̄ε
τ�

(
φ(	)

))
	≤L

converge in law to the limiting process
(Uτ�

(ϕ(	)),Θτ�
(ψ(	))

)
	≤L

as με tends to infinity.

Combined with the approximation Lemma 3.2, this completes the proof
of Proposition 3.1. The proof of Proposition 3.3 is split into two parts, first
a control of the limiting covariance and then the derivation of Wick’s rule to
prove that the limiting process is Gaussian.

Step 1. Control of the covariance. Let us define the hydrodynamic, non-
oscillating projections

g0(x, v) :=
(

u0(x) · v + θ0(x)
|v|2 − (d + 2)

2

)
,

h(x, v) :=
(

ϕ(x) · v + ψ(x)
( |v|2

d + 2
− 1
))

,

(3.8)

for some smooth divergence free vector fields u0, ϕ, and some smooth functions
θ0, ψ. The scaling in g0, h has been tuned asymmetrically so that the initial
covariance is given by

Eε

[
ξ̄ε
0(φ0)ξ̄ε

0(φ)
] −→

∫
(u0 · ϕ + θ0ψ)dx , με → ∞ .

We are going to study the covariance of the joint process ξ̄ε
τ by applying The-

orem 2.1 with

ḡ0(x, v) := g0(x, v)χ
( |v|2

R

)
, h̄(x, v) = h(x, v)χ

( |v|2
R

)
. (3.9)

Setting

φ0 :=
(

u0,
d + 2

2
θ0

)
, φ := (ϕ,ψ) ,

we plug the bounds (3.3) on the test functions into the estimate (2.4) of Theo-
rem 2.1, and recalling the definition (3.1) of the truncated rescaled fluctuation
field, we obtain that for any T > 0 such that (T/α2)3/2 � (log log με)1/4,

sup
t∈[0,T ]

∣
∣
∣
∣Eε

[
ξ̄ε
0(φ0)ξ̄ε

τ (φ)
]−

∫
Mg̃α(t)h̄dxdv

∣
∣
∣
∣

≤ CR‖φ0‖W 1,∞‖φ‖W 1,∞

(
CT

α2

)3/2

(log log με)−1/4,

(3.10)

where g̃α is the solution to the time-rescaled equation

α∂τ g̃α + v · ∇xg̃α +
1
α

Lg̃α = 0 , g̃α|τ=0 = ḡ0 . (3.11)

To conclude the convergence of the covariance as α → 0, we just need to

identify the limit of
∫

Mg̃α(τ)h̄dxdv.
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The starting point for the study of hydrodynamic limits of the linearized
Boltzmann equation (3.11) is the scaled energy inequality

1
2

‖g̃α(τ)‖2
L2(Mdvdx) +

1
α2

∫ τ

0

∫
g̃αLg̃α(τ ′)Mdvdxdτ ′ ≤ 1

2
‖ḡ0‖2

L2(Mdvdx) .

(3.12)
Recall (see [18,19]) that the linearized collision operator L with hard

sphere cross section defined by (1.10) is a nonnegative unbounded self-adjoint
operator on L2(Mdv) with domain

D(L) = L2
(
R

d; (1 + |v|)Mdv
)

and nullspace

Ker(L) = span
{
1, v1, . . . , vd, |v|2} .

In particular we recover from (3.12) the uniform L2 bound

‖g̃α(τ)‖L2(Mdvdx) ≤ ‖ḡ0‖L2(Mdvdx) ≤ ‖g0‖L2(Mdvdx).

This bound implies that there is g ∈ L∞
τ (L2(Mdvdx)) such that, up to ex-

traction of a subsequence,

g̃α ⇀ g weakly in L2
loc(dτ, L2(Mdvdx)) . (3.13)

Moreover the following coercivity estimate holds : there exists C > 0 such
that, for each g in D(L) ∩ (Ker(L))⊥

∫
gLg(v)M(v)dv ≥ C‖g‖2

L2((1+|v|)Mdv). (3.14)

The dissipation thus further provides

‖g̃α − Πg̃α‖L2((1+|v|)Mdvdxdt) = O(α) ,

where Π denotes the orthogonal projection onto Ker(L) in L2(Mdvdx). We
deduce from the previous estimate that

g(τ, x, v) = Πg(τ, x, v) ≡ ρ(τ, x) + u(τ, x) · v + θ(τ, x)
|v|2 − d

2
. (3.15)

It remains to compute the equations on ρ, u and θ. Denoting 〈g〉 :=
∫

gMdv

and recalling (3.11), the moment equations state

α∂τ 〈g̃α〉 + ∇x · 〈g̃αv〉 = 0 ,

α∂τ 〈g̃αv〉 + ∇x · 〈g̃αv ⊗ v〉 = 0 ,

α∂τ 〈g̃α|v|2〉 + ∇x · 〈g̃αv|v|2〉 = 0 .

Using (3.13) and (3.15) we deduce from the first two equations that

∇x · u = 0 , ∇x(ρ + θ) = 0 , (3.16)

referred to as the incompressibility and Boussinesq constraints. We thus have

g(τ, x, v) = u(τ, x) · v + θ(τ, x)
|v|2 − (d + 2)

2
, ∇x · u = 0 . (3.17)
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Note that, up to the cut-off in v which can be removed with a small error
thanks to (3.7), the test function h̄ is in the kernel of the acoustic operator. It
follows that we only need to characterize the mean motion, namely derive the
equations for P 〈g̃αv〉 and 〈g̃α(|v|2 − d − 2)〉:

∂τP 〈g̃αv〉 +
1
α

P∇x ·
〈

g̃α

(
v ⊗ v − 1

d
|v|2Id

)〉
= 0 ,

∂τ
1

d + 2
〈
g̃α

(|v|2 − d − 2
)〉

+
1
α

∇x · 〈g̃α
1

d + 2
v
(
|v|2 − d − 2

)
〉 = 0,

where we recall that P is the Leray projection on divergence free vector fields.

Define the kinetic momentum flux A(v) := v ⊗ v − 1
d
|v|2Id and the kinetic

energy flux B(v) :=
1
2
v(|v|2 − d − 2). As A,B belong to (KerL)⊥, and L is

a Fredholm operator, there exist pseudo-inverses Ã, B̃ in (KerL)⊥ such that
A = LÃ and B = LB̃. Then,

∂τP 〈g̃αv〉 +
1
α

P∇x · 〈(Lg̃α)Ã〉 = 0 ,

1
d + 2

∂τ 〈g̃α(|v|2 − d − 2)〉 +
1
α

2
d + 2

∇x · 〈(Lg̃α)B̃〉 = 0 .

Using the equation
1
α

Lg̃α = −v · ∇xg̃α − α∂τ g̃α (3.18)

we get

∂τP 〈g̃αv〉 − P∇x · 〈(v · ∇x + α∂τ )g̃αÃ〉 = 0 ,

1
d + 2

∂τ 〈g̃α(|v|2 − d − 2)〉 − 2
d + 2

∇x · 〈(v · ∇x + α∂τ )g̃αB̃〉 = 0 .
(3.19)

Then, plugging the Ansatz (3.15), and taking limits in the sense of distribu-
tions, we get the Stokes–Fourier equations

∂τu − νΔxu = 0 , ∇x · u = 0 ,

∂τθ − κΔxθ = 0 ,

with initial data as in (1.17)

u|τ=0(x) := P

∫
g0(x, v)vM(v) dv ,

θ|τ=0(x) :=
∫

g0(x, v)
( |v|2

d + 2
− 1
)

M(v) dv,

and where the diffusion coefficients are given by

ν :=
1

(d − 1)(d + 2)
〈A : Ã〉 and κ :=

2
d(d + 2)

〈B · B̃〉 . (3.20)

We therefore end up with the following convergence as α → 0
∫

Mg̃α(τ)h̄dxdv −→
∫

(u(τ) · ϕ + θ(τ)ψ)dx . (3.21)
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Returning to (3.10), we have proved that

sup
τ∈[0,T ]

Eε

[
ξ̄ε
0(φ0)ξ̄ε

τ (φ)
] −→

∫
(u(τ) · ϕ + θ(τ)ψ)dx , με → ∞ . (3.22)

Remark 3.4. Since the initial data g0 is well-prepared, both the purely kinetic
component and the fast oscillating acoustic waves are negligible, so the con-
vergence of g̃α can be shown actually to hold in strong sense. Using energy
methods, it is even possible to obtain a rate of convergence for (3.21).

Step 2. Wick’s rule Consider p times τ1, . . . , τp, possibly repeated. Thanks to
the cut-off (3.3), we can apply Theorem 2.2 to obtain
∣
∣
∣Eε

[
ξ̄ε
τ1

(
φ(1)

)
. . . ξ̄ε

τp

(
φ(p)

)]−
∑

η∈Spairs
p

∏

{i,j}∈η

Eε

[
ξ̄ε
τi

(
φ(i)

)
ξ̄ε
τj

(
φ(j)

)] ∣∣
∣

≤ CpR
p

p∏

i=1

‖φ(i)‖L∞
(CT

α2

)(2p−1)/2

(log log με)−1/4 .

(3.23)

With the scaling condition (3.2), we get that the right-hand side converges to
0 as με → ∞ which implies the asymptotic pairing of the moments of ξ̄ε

τ . Since
the limiting covariance is characterized by (3.22), this completes Proposition
3.3. �

4. Tightness of Hydrodynamic Fields on Diffusive Time Scales

Let us first introduce for any k ∈ Z the Sobolev space H
k in T

d with the norm

‖F‖2
k :=

∑

j∈Zd

(
1 + |j|2)k |F̂j |2, (4.1)

where (F̂j) stand for the Fourier coefficients of F .

Proposition 4.1. There exists k > 0 such that, in the diffusive limit

με → ∞, α → 0, with μεε
d−1 = α−1 ≤ log log log με,

the fluctuation field (ξε
τ )τ≥0 defined by (1.19) is tight in the Skorokhod space

D
(
[0, T ],H−k

)
. More precisely,

lim
δ→0+

lim
με→∞Pε

[
sup

|σ−τ|≤δ
s,τ∈[0,T ]

∥
∥ξε

τ − ξε
σ

∥
∥

−k
≥ δ′

]
= 0 , ∀δ′ > 0 ,

lim
A→∞

lim
με→∞Pε

[
sup

τ∈[0,T ]

∥
∥ξε

τ

∥
∥

−k
≥ A

]
= 0 .

(4.2)

The tightness property for kinetic times relies on the Garsia–Rodemich–
Rumsey inequality on the modulus of continuity of a function ϕτ : [0, T ] → R,
which we recall ([27]): for b ≥ 4

sup
0≤σ,τ≤T
|τ−σ|≤δ

∣
∣ϕτ − ϕσ

∣
∣ ≤ C

(∫ T

0

∫ T

0

dσdτ
|ϕτ − ϕσ|b
|τ − σ|γ

)1/b

δ
γ−2

b , γ ∈]2, 3[ .

(4.3)
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Because of collisions in the Newtonian dynamics, the fluctuation field ξε has
jumps and this inequality does not apply directly. We therefore start by stating
a modified inequality, whose proof is a slight adaptation of [27] which can be
found in [10] (see Proposition 6.2.4).

Proposition 4.2. Let F : [0, T ] → R be a given function and define for a > 0,
b ≥ 4

Ba(F ) :=
∫ T

0

∫ T

0

dσdτ
|Fτ − Fσ|b
|τ − σ|γ 1|τ−σ|>a , γ ∈]2, 3[ . (4.4)

Then the modulus of continuity of F is controlled by

sup
0≤σ,τ≤T
|τ−σ|≤δ

∣
∣Fτ − Fσ

∣
∣ ≤ 2 sup

0≤σ,τ≤T
|τ−σ|≤2a

∣
∣Fτ − Fσ

∣
∣ + CBa(F )

1
b δ

γ−2
b . (4.5)

Proof of Proposition 4.1. To prove the tightness of the joint process (ξε
τ )τ≥0

in D([0, T ],H−k) for some k large enough, we shall tune the parameter a,
introduced in the statement of Proposition 4.2, as a small fraction of the kinetic
time, i.e. a � α2 in the diffusive scaling. More precisely, we shall use (4.4) with
the parameters

b = 6 , γ = 7/3 , a = (log log με)−1/10, α = (log log log με)−1. (4.6)

We deduce from (4.5) that, for arbitrary δ′ > 0,

Pε

⎛

⎝ sup
0≤τ,σ≤T
|τ−σ|≤δ

∥
∥ξε

τ − ξε
σ

∥
∥2

−k
≥ δ′

⎞

⎠

≤ Pε

⎛

⎝
∑

j

C2Ba

(
ξε(φj)

)1/3

(1 + |j|2)k
δ

γ−2
3 ≥ δ′

4

⎞

⎠

+ Pε

⎛

⎝
∑

j

4

(1 + |j|2)k
sup

|σ−τ|≤2a
σ,τ∈[0,T ]

|ξε
τ (φj) − ξε

σ(φj)
∣
∣2 ≥ δ′

4

⎞

⎠ , (4.7)

where φj(x) = exp(2iπj · x) are the Fourier modes used to define the norm
(4.1). Since a � α2, the two events in the right-hand side of inequality (4.7)
control different time scales and their probabilities have to be estimated by
different methods :

• for time increments |σ − τ | ≥ a, by a control on moments using the
comparison with the limit process;

• for small time increments |σ − τ | ≤ 2a, by reducing to the estimates
on the kinetic times obtained in [10] (see Proposition 6.2.3). To do this,
additional cut-off estimates to control divergences at large velocities are
necessary.
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Step 1. Control of the short hydrodynamic increments.
We are first going to prove that

lim
δ→0

lim
με→∞Pε

⎛

⎝
∑

j

CBa

(
ξε(φj)

)1/3

(1 + |j|2)k
δ

γ−2
3 ≥ δ′

4

⎞

⎠ = 0 . (4.8)

Assume that the following bound holds

Eε

(
Ba

(
ξε(φ)

)) ≤ C ‖φ‖6
W 2,∞ . (4.9)

Since for the Fourier basis ‖φj‖W 2,∞ ≤ C|j|2, we deduce from (4.9) that for
k > d/2 + 2, (4.8) follows from a Markov inequality as γ > 2

Pε

⎛

⎝
∑

j

C2Ba

(
ξε(φj)

)1/3

(1 + |j|2)k
δ

γ−2
3 ≥ δ′

4

⎞

⎠

≤ C
δ

γ−2
3

δ′
∑

j

1

(1 + |j|2)k
Eε

(
Ba

(
ξε(φj)

))1/3
.

We turn now to the proof of (4.9). As γ = 7/3, this will be a consequence
of the following inequality

∀τ, σ ∈ [0, T ] , Eε

[(
ξε
τ (φ) − ξε

σ(φ)
)6
]
1|τ−σ|≥a ≤ C ‖φ‖6

W 2,∞ |τ − σ|3/2 .

(4.10)
Applying Lemma 3.2, it is enough to derive (4.10) for the truncated process
ξ̄ε with cut-off R = log log log με because

∀τ ≤ T, Eε

[(
ξε
τ (φ) − ξ̄ε

τ (φ)
)6] ≤ C‖φ‖6

L6(Td)e
−R/4 ≤ C‖φ‖6

L6(Td) a2 ,

with a defined in (4.6).
Our starting point is the asymptotic factorization (3.23) of the moments

leading to the following formula for the time increments
∣
∣
∣
∣
∣
Eε

[(
ξ̄ε
τ (φ) − ξ̄ε

σ(φ)
)6
]

− 15 Eε

[(
ξ̄ε
τ (φ) − ξ̄ε

σ(φ)
)2
]3
∣
∣
∣
∣
∣

≤ C6R
6 ‖φ‖6

L∞

(CT

α2

)11/2

(log log με)−1/4 ≤ C‖φ‖6
L6(Td) a2,

(4.11)

uniformly in τ, σ ∈ [0, T ], with our choice of scaling (3.2).
Next we are going to use that, by (3.10), the covariance is well approxi-

mated by the solution to the linearized Boltzmann equation (3.11). Denoting
by g̃α the solution of the linearized Boltzmann equation (3.11) with truncated
initial data (3.9), we get that

sup
σ,τ∈[0,T ]

∣
∣
∣
∣Eε

[(
ξ̄ε
τ (φ) − ξ̄ε

σ(φ)
)2
]

− 2
∫

M(ḡ0 − g̃α(τ − σ)) g0dxdv

∣
∣
∣
∣

≤ CR2‖φ‖2
W 1,∞

(
CT 3

α6

)1/2

(log log με)−1/4
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+ C‖φ‖2
L2e−R/4 ≤ C ‖φ‖2

W 1,∞ a2 , (4.12)

using the time invariance of the equilibrium measure and the control (3.7) to
remove the velocity cutoff on (one of) the initial data ḡ0 in the integral. From
(3.19) we have

∂τ

(
P 〈g̃αv〉 − αP∇x · 〈g̃αÃ〉

)
− P∇x · 〈v · ∇x(g̃αÃ)〉 = 0 ,

1
d + 2

∂τ

(
〈g̃α(|v|2 − d − 2)〉 − 2α∇x · 〈g̃αB̃〉

)
− 2

d + 2
∇x · 〈v · ∇x(g̃αB̃)〉 = 0,

so thanks to the uniform L∞
τ (L2(Mdxdv)) bound on g̃α we deduce that

P 〈g̃αv〉 − αP∇x · 〈g̃αÃ〉 is uniformly bounded in W 1,∞
τ (H−2),

〈

g̃α
|v|2 − (d + 2)

2

〉

− α∇x · 〈g̃αB̃〉 is uniformly bounded in W 1,∞
τ (H−2) .

(4.13)

We then have to control the time regularity of the O(α) terms in (4.13).
From (3.12) and (3.14), we get uniform bounds on g̃α in L∞

τ (L2(Mdxdv)) ∩
L2

loc,τ (l2(M(1 + |v|)dxdv)). Then, using the generic notation p for Ã and B̃,
we have p ∈ L2(M(1 + |v|dv) so that

∀τ ∈ [0, T ], ‖∇x〈g̃αp(v)〉‖H−1 ≤ C. (4.14)

Applying the kinetic equation (3.11),

∂τ 〈g̃αp(v)〉 +
1
α

∇x · 〈g̃αp(v)v〉 +
1
α2

〈Lg̃αp(v)〉 = 0

we also obtain that ⇒ ‖〈g̃α(τ)p(v)〉 − 〈g̃α(σ)p(v)〉‖
H−1 ≤ + ‖〈g̃α(τ)p(v)〉−

〈g̃α(σ)p(v)〉‖
H−1 ≤ C

|τ − σ|
α2

1/2

+ C
|τ − σ|

α2
.

We conclude that

∥
∥
∥αP∇x · 〈g̃α(τ)Ã〉−αP∇x · 〈g̃α(σ)Ã〉

∥
∥
∥
H−2

≤C min

(
α, |τ−α|1/2

+
|τ−σ|

α

)
≤C|τ−σ|1/2

,

∥
∥
∥α∇x · 〈g̃α(τ)B̃〉−α∇x · 〈g̃α(σ)B̃〉

∥
∥
∥
H−2

≤C min

(
α, |τ−α|1/2

+
|τ−σ|

α

)
≤C|τ−σ|1/2

.

Therefore, applying (4.13), we deduce that the bulk velocity P 〈g̃αv〉 and tem-
perature 〈g̃α

|v|2−(d+2)
d+2 〉 are uniformly bounded in C

1/2
τ (H−2

x ). Since the initial
data g0 is well prepared (see (3.8)), we deduce that the term involving the
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linearized equation in (4.12) is controlled by
∣
∣
∣
∫

M(ḡ0 − g̃α(τ − σ)) g0dxdv
∣
∣
∣

≤
∣
∣
∣
∣

∫ (
P 〈g̃α(τ − σ)v〉 − P 〈ḡ0v〉

)
· u0dx

∣
∣
∣
∣

+
d + 2

2

∣
∣
∣
∣

∫ (〈
g̃α(τ − σ)

|v|2 − (d + 2)
2

〉
−
〈

ḡ0
|v|2 − (d + 2)

2

〉)
θ0dx

∣
∣
∣
∣

≤ C ‖φ‖2
W 2,∞ |τ − σ|1/2.

Combining (4.11)-(4.12) and the time regularity of the covariance, we get
that for |τ − σ| ≥ a

Eε

[(
ξε
τ (φ) − ξε

σ(φ)
)6
]

1|τ−σ|≥a ≤ C ‖φ‖6
W 2,∞ |τ − σ|3/2.

This completes the proof of Inequality (4.10).

Step 2. Control of the very short kinetic times.
Finally, it remains to control the second term in (4.7). By splitting the

time interval [0, T ] into intervals with kinetic time length scale α2, the estimate
can be reduced, by using the invariant measure and an union bound, to

Pε

⎛

⎝
∑

j

4

(1 + |j|2)k
sup

|σ−τ|≤2a
σ,τ∈[0,T ]

|ξε
τ (φj) − ξε

σ(φj)
∣
∣2 ≥ δ′

4

⎞

⎠ ≤ T

α2
Pε (A) , (4.15)

with the notation

A :=

⎧
⎨

⎩

∑

j

4

(1 + |j|2)k
sup

|σ−τ|≤2a

σ,τ∈[0,α2]

|ξε
τ (φj) − ξε

σ(φj)
∣
∣2 ≥ δ′

4

⎫
⎬

⎭
. (4.16)

Recalling that a � α2, we are going to show that

lim
με→∞

1
α2

Pε (A) = 0, (4.17)

which is essentially the outcome of Proposition 6.2.3 in [10], however the proof
cannot be applied directly in our context and we explain below the necessary
adjustments.

First of all, the test functions are now unbounded in v (contrary to the
Fourier–Hermite modes). Thus an energy cut-off is necessary. For technical
reasons, we are going to use a larger truncation parameter R̃ = (log με)2

instead of R = α−1 introduced in (3.2). The corresponding truncated process
is defined as in (3.1) and denoted by (ξ̃ε

τ )τ≥0. We are going to check that
with high probability both processes coincide because all the velocities remain
smaller than

√
R̃

lim
με→∞

1
α2

Pε

(
∃i, sup

t≤α

∣
∣vε

i (t)
∣
∣ >

√
R̃

)
= 0. (4.18)
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This can be deduced from a result of [11] as follows. Fix n = 4d, η = ε1− 1
2d and

call microscopic cluster of size n a set G of n particle configurations in T
d ×R

d

such that (z, z′) ∈ G × G if and only if there are z1 = z, z2, . . . , z	 = z′ in G
such that

|xi − xi+1| ≤ 3
√

R̃ η, ∀1 ≤ i ≤ � − 1 .

Let Υε
N be the set of initial configurations Zε0

N ∈ Dε
N such that for any inte-

ger 1 ≤ k ≤ α
η , the configuration at time kη satisfies

∀1 ≤ j ≤ N, |vj | ≤
√

R̃

n
, (4.19)

and any microscopic cluster of particles is of size at most n. Adapting to our
framework the proof of Proposition 2.7 of [11] implies that

Pε

(cΥε
N
) ≤ 1

αn
εd. (4.20)

We check that for any configuration in Υε
N , the velocities are bounded from

above by
√

R̃ during the kinetic time interval [0, α]. Indeed, at each interme-

diate time kη, the velocities of configurations in Υε
N , are smaller than

√
R̃

n
by (4.19). Furthermore the clusters are all of size less than n and in the time
interval [k η, (k + 1)η] particles within a cluster cannot interact with particles
in other clusters. As the total kinetic energy of a finite number of particles
is preserved by the hard sphere dynamics, the velocity of each particle will
remain less than

√
R̃. Thus (4.18) is implied by (4.20).

We are now in position to complete the proof of (4.17). Thanks to (4.18),
it is enough to replace the event A by the similar event Ã for the process
(ξ̃ε

τ )τ≥0. It thus remains to prove

lim
με→∞

1
α2

Pε

(
Ã
)

= 0. (4.21)

The statement of Proposition 6.2.3 from [10] is not precise enough to conclude
directly mainly due to the diverging prefactor 1

α2 . However all the required
estimates can be found in [10] and we are going to detail the relevant parts of
the argument.

We proceed as in (4.7) and introduce an additional time cut-off μ
−7/3
ε

instead of a to filter the very small scales

1
α2

Pε

(
Ã
)

=
1
α2

Pε

⎛

⎝ sup
0≤τ,σ≤α2
|τ−σ|≤2a

∥
∥ξ̃ε

τ − ξ̃ε
σ

∥
∥2

−k
≥ δ′

16

⎞

⎠

≤ 1
α2

Pε

⎛

⎝
∑

j

C2B̂
μ

−7/3
ε

(
ξε(φj)

)1/3

(1 + |j|2)k
a

2γ−4
3 ≥ δ′

64

⎞

⎠

+
1
α2

Pε

⎛

⎜
⎝
∑

j

4

(1 + |j|2)k
sup

|σ−τ|≤2μ
−7/3
ε

σ,τ∈[0,α2]

|ξ̃ε
τ (φj) − ξ̃ε

σ(φj)
∣
∣2 ≥ δ′

64

⎞

⎟
⎠ ,
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with the analogous notation of (4.4) on this short time scale

B̂
μ

−7/3
ε

(F ) :=
∫ α2

0

∫ α2

0

dσdτ
|Fτ − Fσ|b
|τ − σ|γ 1|τ−σ|>μ

−7/3
ε

with b = 6 , γ = 7/3.

In our procedure, it was necessary to use first a time cut-off a in (4.7) in order
to reduce to estimates in the kinetic time scale. Indeed the error term (4.12)
occurring in the comparison with the limiting equations on the diffusive time
scale [0, T ] was too crude to be efficient up to the smallest time scale μ

−7/3
ε . On

the kinetic scale better controls can be derived and one can show as in Lemma
6.2.6 of [10] (with the Remark 6.2.8 to take care of the large velocities) that

1
α2

Pε

⎛

⎝
∑

j

C2B̂
μ

−7/3
ε

(
ξ̃ε(φj)

)1/3

(1 + |j|2)k
a

2γ−4
3 ≥ δ′

64

⎞

⎠ ≤ C2 64
α2 δ′ a

2γ−4
3 .

As a � α, this term vanishes in the diffusive limit. By using the proof of
Lemma 6.2.5 of [10] (with the Remark 6.2.8 to take care of the logarithmic
divergence), we deduce that second term vanishes also in the diffusive limit

1
α2

Pε

⎛

⎜
⎝
∑

j

4

(1 + |j|2)k
sup

|σ−τ|≤2μ
−7/3
ε

σ,τ∈[0,α2]

|ξ̃ε
τ (φj) − ξ̃ε

σ(φj)
∣
∣2 ≥ δ′

64

⎞

⎟
⎠ ≤ C

α2
μ−1/3

ε → 0.

Combining the previous results, (4.21) holds. This completes the proof of
Proposition 4.1. �
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